First convert every digit of the octal number to 3 binary digits, using this table as reference:
Octal | Binary |
---|---|
0 | 000 |
1 | 001 |
2 | 010 |
3 | 011 |
4 | 100 |
5 | 101 |
6 | 110 |
7 | 111 |
Then convert every 4 binary digits to a hexadecimal digit, using this table as reference:
Binary | Hexadecimal |
---|---|
0000 | 0 |
0001 | 1 |
0010 | 2 |
0011 | 3 |
0100 | 4 |
0101 | 5 |
0110 | 6 |
0111 | 7 |
1000 | 8 |
1001 | 9 |
1010 | A |
1011 | B |
1100 | C |
1101 | D |
1110 | E |
1111 | F |
Example:
Convert octal number 123 to hexadecimal number:
= 1 2 3
= 001 010 011
= 0101 0011
= 5316
Below is the reference table for converting binary number to decimal, octal, hexadecimal, ranging from 010 to 1510:
Binary | Decimal | Octal | Hexadecimal |
---|---|---|---|
0000 | 0 | 0 | 0 |
0001 | 1 | 1 | 1 |
0010 | 2 | 2 | 2 |
0011 | 3 | 3 | 3 |
0100 | 4 | 4 | 4 |
0101 | 5 | 5 | 5 |
0110 | 6 | 6 | 6 |
0111 | 7 | 7 | 7 |
1000 | 8 | 10 | 8 |
1001 | 9 | 11 | 9 |
1010 | 10 | 12 | A |
1011 | 11 | 13 | B |
1100 | 12 | 14 | C |
1101 | 13 | 15 | D |
1110 | 14 | 16 | E |
1111 | 15 | 17 | F |