Convertissez d’abord chaque chiffre hexadécimal commençant par le premier chiffre en 4 chiffres binaires, en utilisant ce tableau comme référence :
| Hexadécimal | Binaire |
|---|---|
| 0 | 0000 |
| 1 | 0001 |
| 2 | 0010 |
| 3 | 0011 |
| 4 | 0100 |
| 5 | 0101 |
| 6 | 0110 |
| 7 | 0111 |
| 8 | 1000 |
| 9 | 1001 |
| A | 1010 |
| B | 1011 |
| C | 1100 |
| D | 1101 |
| E | 1110 |
| F | 1111 |
Convertissez ensuite tous les 3 chiffres binaires en un chiffre octal correspondant, en utilisant ce tableau comme référence :
| Binaire | Octal |
|---|---|
| 000 | 0 |
| 001 | 1 |
| 010 | 2 |
| 011 | 3 |
| 100 | 4 |
| 101 | 5 |
| 110 | 6 |
| 111 | 7 |
Example:
Convertir 6D de l'hexadécimal à l'octal :
= 0110 1101
= 1 101 101
= 1 5 5
= 155
Vous trouverez ci-dessous le tableau de référence pour convertir un nombre binaire en décimal, octal, hexadécimal, allant de 010 à 1510:
| Binaire | Décimal | Octal | Hexadécimal |
|---|---|---|---|
| 0000 | 0 | 0 | 0 |
| 0001 | 1 | 1 | 1 |
| 0010 | 2 | 2 | 2 |
| 0011 | 3 | 3 | 3 |
| 0100 | 4 | 4 | 4 |
| 0101 | 5 | 5 | 5 |
| 0110 | 6 | 6 | 6 |
| 0111 | 7 | 7 | 7 |
| 1000 | 8 | 10 | 8 |
| 1001 | 9 | 11 | 9 |
| 1010 | 10 | 12 | A |
| 1011 | 11 | 13 | B |
| 1100 | 12 | 14 | C |
| 1101 | 13 | 15 | D |
| 1110 | 14 | 16 | E |
| 1111 | 15 | 17 | F |